As the recognized leader in heat exchanger products, systems and technology, ITT Standard has been providing state-of-the-art solutions to heat transfer problems for more than 75 years.

Today, the company is devoted exclusively to the design, engineering and manufacture of shell-and-tube, gasketed plate, brazed plate and air-cooled heat exchanger products. ITT Standard heat exchangers are engineered and manufactured by experienced craftsmen who have been devoted to the science of heat transfer not just for years, but for generations. And because we offer such a wide assortment of different heat exchanger designs, we can assure you of getting the optimum heat transfer solution to your specific application, without bias toward any one particular (or proprietary) product line.

Steel Heat Exchangers. The low-cost, high-reliability solution to your oil or process fluid temperature control requirements.

The SX 2000 heat exchanger from ITT Standard combines dependable operation with fast availability. Most of the models shown here can be shipped from off-the-shelf stock. Others can be assembled in a minimal amount of time using prefabricated parts and subassemblies.

The SX 2000 unit is a compact, thermally efficient design manufactured of carbon steel with copper tubes standard. Bonnets are available in single-, two- and four-pass configurations in cast iron. Optional tubing and tubeside materials are also available.

When you need a steel heat exchanger for lube oil cooling or other process cooling applications, particularly when you need it fast — the SX 2000 is the ideal answer.

All SX 2000 steel heat exchangers are manufactured with the highest standards of quality. ITT Standard was the first North American heat exchanger manufacturer to be certified under ISO 9001 procedures and guidelines.
Design Temperatures and Pressures

<table>
<thead>
<tr>
<th>Shell side</th>
<th>Tube side</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design pressure (psi)</td>
<td>300</td>
</tr>
<tr>
<td>Test pressure (psi)</td>
<td>450</td>
</tr>
<tr>
<td>Design temperature (°F)</td>
<td>300</td>
</tr>
<tr>
<td>Design temperature (°C)</td>
<td>149</td>
</tr>
</tbody>
</table>

Table: Standard Sizes and Dimensions

<table>
<thead>
<tr>
<th>Size</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>03X4</td>
<td>3.250</td>
<td>4.500</td>
<td>20.000</td>
<td>2.312</td>
<td>26.375</td>
<td>2.750</td>
<td>4.500</td>
<td>1.625</td>
<td>.438</td>
<td>DA</td>
<td>1/4"</td>
<td>1"</td>
</tr>
<tr>
<td>05X4</td>
<td>5.250</td>
<td>6.750</td>
<td>18.000</td>
<td>3.438</td>
<td>27.125</td>
<td>4.000</td>
<td>5.250</td>
<td>2.000</td>
<td>.500</td>
<td>.750</td>
<td>1/4"</td>
<td>1-1/2"</td>
</tr>
<tr>
<td>06X4</td>
<td>10.000</td>
<td>17.125</td>
<td>27.125</td>
</tr>
<tr>
<td>06X6</td>
<td>17.500</td>
<td>17.875</td>
<td>27.125</td>
</tr>
<tr>
<td>06X8</td>
<td>27.500</td>
<td>19.000</td>
<td>27.875</td>
</tr>
<tr>
<td>08X4</td>
<td>17.125</td>
<td>27.875</td>
</tr>
<tr>
<td>08X8</td>
<td>42.250</td>
</tr>
<tr>
<td>08X10</td>
<td>54.250</td>
</tr>
</tbody>
</table>

Note: On multi-pass units, the vent and drain bosses on the inlet bonnet will not be drilled or tapped unless specifically requested.

Diagram: Design Temperatures and Pressures

- Single-pass
- Two-pass
- Four-pass
GENERAL: Heat exchanger shall be of shell-and-tube design, of carbon steel construction, including shell, tubesheets, and baffles, providing single-, two- and four-pass configurations as determined by thermal requirements.

TUBING: Units to be furnished with 1/4” OD copper tubing for shell diameters of 3” and 4”, and 3/8” OD copper tubing for shell diameters of 5”, 6” and 8” for maximum heat transfer.

BONNETS: Shall be cast iron, pass arrangements selected to optimize design.

TUBESHEETS: Shall be constructed of SA516 Grade 70 steel, precision drilled, and welded to the shell.

BAFFLES: Shall be punched steel, maintaining tight shell side and tube hole tolerances to minimize fluid bypass.

MOUNTING: Heat exchanger supports shall be bolted to the unit, and provide elongated mounting holes to compensate for thermal expansion.

OPTIONS:
- stainless steel, copper-nickel, or steel tubes
- stainless steel or copper-nickel tubesheets
- ANSI and SAE four-bolt flanged connections

Selection

Many ITT Standard units are stocked in Buffalo as well as in distributor locations nationwide. The result is faster delivery of both off-the-shelf heat exchangers as well as many specialty engineered products. Thanks to the economies of standardization and production, we can provide standard, readily delivered solutions for even the most special requirements — at a lower cost.

Specifications

OPTIONS:
- stainless steel, copper-nickel, or steel tubes
- stainless steel or copper-nickel tubesheets
- ANSI and SAE four-bolt flanged connections

Our advanced thermal research lab is one of the largest and best-equipped testing facilities in the industry. Staffed by a team of experienced chemical, mechanical and metallurgical engineers, it is used to solve problems and identify opportunities for product improvement and development. It is also available to our customers to test products and systems under actual operating conditions, assuring reliability prior to field deployment.
SX2000 Heat Exchanger specification

GENERAL: Heat exchanger shall be of shell-and-tube design, of carbon steel construction, including shell, tubesheets, and baffles, providing single-, two-, and four-pass configurations as determined by thermal requirements.

TUBING: Units to be furnished with 1/4” OD copper tubing for shell diameters of 3” and 4”, and 3/8” OD copper tubing for shell diameters of 5”, 6”, and 8” for maximum heat transfer.

BONNETS: Shall be cast iron, pass arrangements selected to optimize design.

TUBESHEETS: Shall be constructed of SA516 Grade 70 steel, precision drilled, and welded to the shell.

BARRIERS: Shall be punched steel, maintaining tight shell side and tube hole tolerances to minimize fluid bypass.

MOUNTING: Heat exchanger supports shall be bolted to the unit, and provide elongated mounting holes to compensate for thermal expansion.

OPTIONS:
- stainless steel, copper-nickel, or steel tubes
- stainless steel or copper-nickel tubesheets
- ANSI and SAE four-bolt flanged connections

Selection

Your ITT Standard representative has complete information on SX 2000 and other heat exchanger products to help you meet your particular application requirements. What’s more, we can use advanced computer software programs to quickly and easily determine the most efficient heat exchanger to match your specific parameters. The process of heat exchanger design and performance calculations is combined into one simple, dependable program that we can use to solve virtually any heat transfer problem. Give us a call.

Specifications

OPTIONS:
- stainless steel, copper-nickel, or steel tubes
- stainless steel or copper-nickel tubesheets
- ANSI and SAE four-bolt flanged connections

Selection

Many ITT Standard units are stocked in Buffalo as well as in distributor locations nationwide. The result is faster delivery of both off-the-shelf heat exchangers as well as many specially engineered products. Thanks to the economies of standardization and production, we can provide standard, readily delivered solutions for even the most special requirements — at a lower cost.

Selection

Our advanced thermal research lab is one of the largest and best-equipped testing facilities in the industry. Staffed by a team of experienced chemical, mechanical, and metallurgical engineers, it is used to solve problems and identify opportunities for product improvement and development. It is also available to our customers to test products and systems under actual operating conditions, ensuring reliability prior to field deployment.